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Abstract— Despite advancements in human-robot teamwork,
limited progress was made in developing AI assistants capable
of advising teams online during task time, due to the challenges
of modeling both individual and collective mental states of
the team members. Dynamic epistemic logic has proved to
be a viable tool for representing a machine Theory of Mind
and for modeling communication in epistemic planning, with
applications to human-robot teamwork. However, this approach
has yet to be applied in an online teaming assistance context
and fails to account for the real-life probabilities of potential
team mental states. We propose a novel blend of epistemic
planning and POMDP techniques to create a risk-bounded AI
team assistant, that intervenes only when the team’s expected
likelihood of failure exceeds a predefined risk threshold or in
the case of potential execution deadlock. Our experiments and
simulated demonstration on the Virtualhome testbed show that
the assistant can effectively improve team performance.

I. INTRODUCTION

When a team collaborates on a task, there is often sponta-
neous coordination on their courses of actions. However, in
real life, the team might not have a shared mental model of
the task. For example, one may be uncertain of the intent
of others or have false beliefs of some task constraints
or world state related to the task. Such misalignment of
beliefs can potentially lead to task failure. We envision an AI
team assistant that acts as an external observer to the team,
intervening when necessary to align team members’ beliefs
of plans to ensure successful execution. Such an assistant can
inform members about their false beliefs of the task and of
each other, instruct them on what actions to take, and inquire
about what beliefs they hold when it is uncertain itself.

Despite recent advances in human-robot collaboration [1],
[2], [3], [4], limited progress has been made in developing AI
assistants that oversee teams and offer real-time interventions
[5]. This is largely due to the complexity of modeling team
members’ individual and collective mental states and the var-
ious forms of communication such an assistant should ideally
employ. Meanwhile, dynamic epistemic logic emerged as a
useful tool to represent a machine Theory of Mind (ToM) and
to model communication in the field of epistemic planning,
with applications extended to human-robot teamwork [6].

Consider an example ToM task from [6] in which a robot
and a human3 collaborate to prepare a drink for breakfast.
The robot is responsible for grabbing either a mug or a glass
as the container, and the human will grab either some coffee
or some orange juice for the drink. For the task to succeed,
it is required that the mug has to go with the coffee and the

1Computer Science and Artificial Intelligence Laboratory, MIT, Cam-
bridge, MA 01239, USA zhangyn@mit.edu

2Dynamic Object Language Labs, Lexington, MA 02421, USA
3Agents are equal partners and the role of human/robot does not matter.

Fig. 1. (A) Robot (square) and human (circle) share knowledge of the task
constraint. (B) Robot knows the task constraint and correctly knows that
human doesn’t know. (C) Robot incorrectly thinks that human also knows
the task constraint. (D) Neither agent knows the task constraint.

glass has to go with the juice. We may consider 4 possible
cases related to the team’s knowledge of the task constraint
as shown in Figure 1. Among those, an external assistant
is most useful in the latter two cases. In case (B), a ToM
agent as described in [6] taking robot’s role can be expected
to wait for the human to pick a drink first or explain to
the human about the task constraint. However, in (C), if
the robot is unaware of the human’s false belief and picks
a container first, it depends on the assistant to explain the
task constraint to the human. Additionally, rather than being
certain of which case it is, the assistant may also only have
a prior probabilistic belief on which of the 4 cases is true.

This work proposes such an AI team assistant assuming
it has complete visibility of the team’s execution of actions
but not their mental states, who intervenes solely through
communication, including asking questions, providing ex-
planations, and announcing intent. To prevent overwhelming
the team, the assistant is risk-bounded, intervening only to
maintain the team’s failure rate below a specified risk bound
or to resolve execution deadlocks. We show its effectiveness
through experiments and demonstration in simulation.

II. RELATED WORK

When interaction with another human is concerned, par-
tially observable Markov decision processes (POMDPs) are a
common framework in which the human’s internal state, such
as intent, is hidden [4], [7], [8]. Human behavior is assumed
to be conditional on their internal state and stochastic in
nature, and their influence on the world is captured by the
stochastic transition function. Consequently, these methods
typically require pre-specifying or learning a human behavior
model pertaining to the transition function, such as learning
an AMM [4]. This idea was recently extended to team
scenarios [5], proposing an AI agent that provides task-time
interventions. Their method, however, solely instructs teams
on what intent to pursue, since it can be challenging to obtain
training data when richer mental models are concerned.

Another route without the need for learning is to adopt a



recursive belief representation – a explicit model of Theory
of Mind, such as interactive POMDP (I-POMDP) [9], [10]
or social MDP [11], [12]. Each agent can predict others’
actions by solving a nested problem according to its belief of
their model, assuming agents are mostly rational and reward-
maximizing. Since agents’ beliefs have a direct impact on
their actions, this has the benefit that we can influence their
actions by altering their beliefs. However, these frameworks
have limited applicability in practice due to their intractabil-
ity, the need for a complex model for explicit communication
that directly alters beliefs [13], and it is impractical to assume
accurate prior data on such nested finite probabilistic spaces.

On the other hand, epistemic planning [14], [15] leveraged
epistemic logic to represent a qualitative machine Theory of
Mind for planning to achieve epistemic goals. In particular,
the DEL approach [14], [16] leverages dynamic epistemic
logic (DEL) to model the update of the epistemic state due
to both physical and epistemic actions. Recent work, EPike
[6], shows the applicability of the DEL approach to human-
robot teamwork. Our method is an innovative combination of
insights from EPike and the POMDP formulation to produce
a risk-bounded assistant with a explicit Theory of Mind.

III. PROBLEM FORMULATION

We formulate the assistant’s intervention problem based
on the POMDP framework, where the hidden state is the
team’s epistemic state, i.e. the players’ nested mental models
of the task, represented using epistemic logic. We leverage
two key ideas: (1) state transitions, especially as a result of
communication actions, can be defined using dynamic epis-
temic logic (DEL), and (2) the observations consist of actions
taken by the team, whose probability can be estimated using
epistemic planning techniques given a specific epistemic state
and assuming agents are mostly rational, which in turn reveal
the true epistemic state, similar to inverse planning [17], [18].

More formally, we define the problem as a DEL-POMDP
⟨S, b0,A, T, δ, O,C,CO⟩, where S is a (potentially infinite)
set of possible global epistemic states. b0 is the initial belief
state, which is a probabilistic distribution over a finite subset
of states S ⊂ S, such as the 4 possible states shown in Figure
1. A = AI∪AT is the set of all epistemic actions partitioned
into possible intervention actions AI and possible actions
by agents in the team AT . T : S × A × S → [0, 1] is the
transition probability function. δ : S×A → {0, 1} is a safety
function that outputs 0 for failure. O : S×AT → [0, 1] is the
observation probability function that specifies the probability
of observing a team action at some epistemic state. C : S ×
AI → R is the cost function for intervention actions. CO :
S ×AT → R is the cost function for observations.

Note that our definition differs from the standard POMDP
formulation in two ways: (1) We introduce a safety function,
permitting certain state-action transitions to terminate in a
failure state. For example, we consider it a failure if the
assistant explains to an agent something that is not actually
true, or if an agent in the team takes an action that leads to
failure of the task. (2) Besides the assistant taking interven-
tion actions, an observation, in this case, is also an action

taken by the team and provides an additional state transition,
incurring further cost and potentially resulting in failure as
well. By employing the safety function, our formulation
builds on the chance-constrained POMDPs (CC-POMDPs)
[19] and requires an additional specification of a risk bound
∆, the maximum allowed probability of failure. Lastly, we
examine the problem within a finite-horizon context, defining
h as a finite horizon.

We denote Ht as the action-observation history up to
time t, where Ht = [a0, o1, a1, o2, ..., at−1, ot]. Since both
intervention and observations are actions in A that trigger
state transitions, the state trajectory is an unobserved se-
quence [s0, s

′
1, s1, s

′
2, s2, ..., s

′
t, st], such that b0(s0) > 0,

T (sk−1, ak−1, s
′
k) > 0, O(s′k, ok) > 0, and T (s′k, ok, sk) >

0 for k = 1, ..., t. A state trajectory fails at time t if
δ(st−1, at−1) = 0 or δ(s′t, ot) = 0. Note that once we reach
a failure state, it does not matter what happens next. In other
words, a failure state can be considered a special absorbing
state that incurs no further cost.

The solution to the finite-horizon DEL-POMDP is a policy
π that maps an action-observation history Ht to intervention
actions to take. When deterministic policies are concerned,
the output is simply an action at = π(Ht). When stochastic
policies are allowed, it specifies a probability distribution of
actions to take. For this work, we experimented with solvers
that allow both types of policies, as described in Section IV.

An optimal solution π∗ is one that minimizes the expected
cumulative cost for the finite horizon h:

π∗ = argmin
π

E
[ h−1∑
t=0

C(st, at)+CO(s
′
t+1, ot+1)

∣∣b0, π] (1)

subject to the chance constraint:

1− Pr
( h−1∏

t=0

δ(st, at)δ(s
′
t+1, ot+1) = 1

∣∣b0, π) ≤ ∆ (2)

where Pr(
∏h−1

t=0 δ(st, at)δ(s
′
t+1, ot+1) = 1) is the probabil-

ity of no failure occurs in the state trajectory.

A. Calculating Risk of Failure

To ensure the satisfaction of the chance constraint Eq (2),
we introduce er(bt|π) that represents the execution risk of
policy π from belief state bt for the remainder of the planning
horizon. Eq (2) then amounts to satisfying the condition
er(b0|π) ≤ ∆. In order to calculate the execution risk,
we follow CC-POMDPs [19] and count the probability of
a transition into a failure state towards the risk spent, and
we continue acting conditional on no failure having occurred.
We further define safe belief b̃t as belief at time t conditional
on all states being safe, that is, the leading transitions to the
state all satisfy the safety function δ. The initial belief is
assumed to be safe: b̃0 = b0.

For a single step st, given safe belief b̃t and intervention
action a, the updated prior belief b′t+1 for s′t+1 is:

b′t+1(s
′) =

∑
s

δ(s, a)T (s, a, s′)b̃t(s) (3)



with the probability that state s′t+1 is safe from intervention
a denoted as psa(b̃t, a) =

∑
s δ(s, a)b̃t(s). The safe belief

b̃′t+1 can then be obtained by normalizing over the probability
that it is still safe:

b̃′t+1(s
′) = b′t+1(s

′)/psa(b̃t, a) (4)

Given b̃′t+1, the probability of observing ot+1 = o is:

Pr(ot+1 = o|b̃′t+1) =
∑
s′

b̃′t+1(s
′)O(s′, o) (5)

Assuming that ot+1 = o is observed, we can first update our
posterior belief of b̃′t+1:

b̃′t+1(s
′|o) = 1

η
O(s′, o)b̃′t+1(s

′) (6)

where η =
∑

s′ O(s′, o)b̃′t+1(s
′). Since observation provides

another state transition, we can compute the posterior belief
after the transition as:

bt+1(s) =
∑
s′

δ(s′, o)T (s′, o, s)b̃′t+1(s
′|o) (7)

with the probability that state st+1 is safe from observation
o denoted as psa(b̃

′
t+1, o) =

∑
s′ δ(s

′, o)b̃′t+1(s
′|o). The safe

belief b̃t+1 conditional on the observation being safe is:

b̃t+1(s) = bt+1(s)/psa(b̃
′
t+1, o) (8)

Given the above, we can compute the execution risk from
any safe belief b̃t by evaluating the risk spent at each step st
and the subsequent cumulative risk assuming that st hasn’t
failed. For simplicity, we focus on deterministic policies here
while stochastic policies can be derived similarly:

er(b̃t|π) = 1− psa(b̃t, a) + psa(b̃t, a)er(b̃
′
t+1|π) (9)

where, denoting Pr(ot+1 = o|b̃′t+1) as pobs(b̃
′
t+1, o),

er(b̃′t+1|π) =
∑
o

pobs(b̃
′
t+1, o)

(
1− psa(b̃

′
t+1, o)+

psa(b̃
′
t+1, o)er(b̃t+1|π)

) (10)

Similarly, the expected cost c(b̃0|π) for a given pol-
icy π can be computed recursively from: c(b̃t|π) =∑

s C(s, a) b̃t(s) + psa(b̃t, a)c(b̃
′
t+1|π), where c(b̃′t+1|π) =∑

o pobs(b̃
′
t+1, o) (

∑
s′ CO(s

′, o)b̃′t+1(s
′|o) + psa(b̃

′
t+1, o)

c(b̃t+1|π)).

B. Interleaving Interventions & Observations

The action-observation history Ht naturally corresponds to
the assistant and the team taking turns to act. However, it is
reasonable to expect that the assistant can choose to intervene
or not and to intervene consecutively if needed, such as
asking a question to one player before explaining to another,
or providing multiple explanations consecutively. Therefore,
in our modeling of DEL-POMDP: (1) we introduce a special
noop ∈ A as an option for the assistant not to intervene, and
(2) we introduce a special skip ∈ AT that represents the
skipping of the team action immediately following a non-
noop intervention. Formally, if at ̸= noop, then ot+1 = skip.

This way, agents only get a chance to act if the assistant has
completed all intended interventions. Note that this assumes
that the assistant can always intervene in time if it needs to
before agents’ actions. For any state s, T (s, skip, s) = 1,
δ(s, skip) = 1, and CO(s, skip) = 0.

C. State Transitions via DEL

The primary advantage of DEL-POMDP is its utilization
of DEL for defining the transitions of the team’s mental state
in response to both physical and epistemic actions. In this
section, we describe the general framework pertinent to any
DEL formulation. The subsequent section will delve into our
specific choice of DEL for multi-agent task execution.

We begin by defining the state space S for DEL-POMDP.
Each state s ∈ S is a global epistemic state represented by a
pointed Kripke model [20], which encompasses not only the
actual state but also agents’ informational perspectives of the
state. We require each epistemic state to be global, that is,
the pointed Kripke model is pointed at exactly one world, or
intuitively speaking, each state fully determines the informa-
tion attitude of the agents. The assistant’s uncertainties are
captured by its belief state – a probability distribution over
global epistemic states. We refer to the belief over global
epistemic states as an epistemic belief state.

For the action space A, including both intervention actions
and observations of team actions, each action is an epistemic
action represented by a pointed action model [21] with a
similar Kripke structure. An action a updates the state s via
the product update s′ = s ⊗ a. Actions also have precon-
ditions that determine their applicability in a specific state
s. Denoting AI(s) as the set of all applicable interventions
at s ∈ S , the set of possible interventions at an epistemic
belief state b with domain S includes AI(s)for all s ∈ S,
in addition to some question-asking actions derived from the
set S directly, described in Section III-D.2.

Note that in DEL, agents are assumed to execute asyn-
chronously instead of taking joint actions simultaneously as
in typical multi-agent MDPs [?]. We assume the availability
of such an observation function O that outputs the list of
possible team actions and their probabilities O(s, o) given
an epistemic state s. However, such O may not be readily
available. In our case, it is more reasonable to assume the
availability of function Oi that outputs the probability of
actions for each agent i in the team, estimated using existing
techniques in epistemic planning [6], [16], and compute O
from Oi. More specifically, when considering the team’s
action as a whole, two things may occur: either one of the
agents takes an action first or none of the agents act, resulting
in hanging execution and no progress being made. Denoting
inaction as noop, the team only takes a noop if none of the
agents act. Thus, the likelihood of a team-wise noop at state
s is computed as O(s, noop) =

∏
i∈Ag Oi(s, noop). We then

normalize the probability for any non-noop action for agent
i by: O(s, oi) =

Oi(s,oi)∑
j∈Ag

∑
oj ̸=noop Oj(s,oj)

(1−O(s, noop)).
Finally, we define two task-specific concepts. First, we

define a set of successful global epistemic states G, where
s ∈ G denotes a state that reaches the end goal of the task.



Such a goal may be the team having successfully prepared
the drink, or it can also include epistemic goals, such as
when all the team members know that they have reached the
goal state, or even that there is common knowledge that they
have reached the goal state. Second, we define a set of failure
global epistemic states F , where s ∈ F is a state that reaches
a failure state of the task, such as if the combination of mug
and juice is selected. We define our success and failure state
for multi-agent task execution in Section III-D.3.

Given the above, we provide the following specification
to the DEL-POMDP functions:

• δ(s, a) = 1 if and only if action a is applicable to s and
s′ = s⊗ a ̸∈ F .

• T (s, a, s′) = 1 if and only if a is applicable to s and
s′ = s⊗ a and 0 otherwise.

• Oi(s, oi) > 0 only if agent i considers action oi to be
applicable to s from its local perspective.

• C(s, a) > 0 for a ̸= noop and C(s, noop) = 0. That is,
any non-noop intervention action should have a cost.

• CO(s, noop) > 0 if s ̸∈ G, and 0 otherwise. That is,
there is a cost to the team taking no action when the
task has not succeeded. For the rest of the team actions,
for this paper, we assume CO(s, o) = 0.

The inclusion of a chance constraint concerning the safety
function allows the assistant to take some risks, such as when
the likelihood of the team taking an incorrect action is small,
or when an intervention only has a small likelihood of being
inapplicable, such as making an announcement of something
that the assistant almost certainly believes to be true.

D. DEL for Multi-Agent Task Execution

To represent multi-agent task execution, our DEL formu-
lation follows from the work of EPike [6]. More specifically,
we leverage a variant of epistemic logic, called the condi-
tional doxastic logic for knowledge bases (CDL-KB), whose
semantics is defined by plausibility models [22] instead of
Kripke models. At a high level, such a logic differs from
the most commonly seen epistemic logic in 2 ways: (1) first,
instead of describing agents’ beliefs regarding the state of the
world, we describe their beliefs regarding a knowledge base
that encodes their knowledge of the task, i.e. what plans are
feasible. (2) Second, conditional doxastic logic (CDL) pre-
encodes how agents’ beliefs get revised upon new, potentially
contradicting, evidence. This allows us to model agents with
false beliefs and allow the assistant to intervene and correct
their false beliefs. We focus next on how to model the role
of an assistant in the framework, while referring the readers
to [6] for the details of CDL-KB.

1) Epistemic Belief State: The assistant holds an epis-
temic belief state – a probability distribution over the set
of epistemic states capturing possible team mental states on
the task. Formally, a global epistemic state is represented
by a pointed plausibility model s = (M,w), where M is a
plausibility model that specifies the information perspectives
of the agents, and w ∈ W is a pointed world representing the
actual plan space for the task. Note that the set of agents Ag
defined for M does not include our assistant, meaning that

Fig. 2. Epistemic states with human (H) and robot (R), where each node is
a possible world representing a possible knowledge base for the task, with
the pointed world highlighted in bold. The arrows represent the order of
plausibility from the agents’ perpsectives. c1 represents the task constraint.

Fig. 3. (left) The assistant’s explanation is modeled by the precondition
¬BH in(c1), i.e. human does not believe c1 is in the knowledge base. The
arrow to the right indicates that human thought nothing happened, hence
the explanation is private to the robot. (right) Announcing intent to be juice
requires the precondition that sat(drink = juice), i.e. selecting juice is
satisfiable, and adds the constraint (drink = juice) as an effect.

agents in the team do not actively consider the assistant’s
participation in the task. We emphasize again that while the
assistant’s belief is probabilistic, epistemic states represented
by plausibility models are qualitative and do not contain
probabilities. Figure 2 shows the corresponding modeling of
epistemic states from Figure 1.

2) Intervention Actions: In EPike [6], an agent can per-
form four types of actions, namely, execution actions, ex-
planation actions, intent announcements, and question-asking
actions. For our assistant, it can intervene via communication
and hence can take all but execution actions.

Explanation & Intent Announcement: An explanation ac-
tion allows an agent to explain a task constraint or someone’s
belief to another who is uncertain or has incorrect belief.
For agent i to explain φ, the precondition is that the agent
itself must believe what it explains is true, i.e. Biφ. An
intent announcement allows an agent to commit the team
to specific choices of actions. For agent i to announce the
intent c, the precondition is that agent i believes the intent is
satisfiable, i.e. Bisat(c). The precondition, conversely, also
dictates what the rest of the team observes as the announced
truth – not that φ or sat(c) is actually true, but that the
actor, agent i, believes them to be true. When considering
these actions coming from the assistant, we assume the
assistant’s words are always taken as the truth by the agents,
and simply remove any prefix of Bi from the precondition.
Figure 3 shows two example interventions where the assistant
privately explains to the robot that the human does not know
about the task constraint (left), and the assistant announces
the intent for the human to select orange juice (right).

Asking Questions: Agents can ask each other questions to
inquire about their beliefs concerning φ. For example, one
might ask another agent if they know the task constraint or
not. In DEL, this is modeled as a non-deterministic action.
When the assistant asks a question, we can model the effect
of such a question by modeling the agent’s answer as the
observation ot+1 received immediately after the question is
asked at. Each possible observation o corresponds to an



Fig. 4. Single-step expansion for the DEL-POMDP explicit graph

answer to the question being announced privately, modeled
as a private announcement action. O(s, o) = 1 iff s ⊨ pre(o),
where pre denotes precondition. The probability of receiving
each observation is computed based on Eq (5).

3) Defining Success & Failure: For this paper, concerning
the problem of multi-agent task execution, we define success
as the team completing the execution of a feasible plan for
the task. We define failure as when there are no feasible plans
that remain for the task.

Note that with this formulation, an intervention will not
result in failure as long as it is applicable to s. Additionally,
because the precondition for an agent’s action depends only
on the agent’s subjective belief, an action is applicable to s
from the agent’s local perspective if and only if it is actually
applicable to s. This means while an inapplicable interven-
tion to s results in failure, an observed action inapplicable
to s, instead, provides evidence that s is not the true state.

E. Estimating Probability of Observations

To provide an estimation of Oi for each agent i, we assume
agents are bounded rational and will not take an action that
they consider inapplicable. We take advantage of the online
execution planning algorithm from EPike that outputs a list
of applicable actions for an agent and their subjective scores
from the agent’s perspective at a given epistemic state s [6].
We assume an agent has a uniform probability of taking any
action from the set that maximizes the subjective score. As
an MCTS-based algorithm, we can control how rational the
agents are by varying the number of iterations to run for.

IV. RISK-BOUNDED ALGORITHMS

To find a policy π that meets the risk bound ∆, we first
illustrate the policy space by expanding an explicit graph
up to horizon h with each step of the expansion shown in
Figure 4. A policy is a subtree of this explicit graph. For
deterministic policies, a unique action is chosen at every
circle node, whereas for stochastic policies, we determine
a probability distribution of the actions at every circle node
[23]. We use three state-of-the-art risk-bounded algorithms
to solve for the policy.

RAO* [19] is a risk-bounded version of AO* designed
for CC-POMDPs. To efficiently prune the policy space that
violates the chance constraint, it maintains an upper risk
bound for each node – the maximum amount of risk that can
be spent by the node going forward, and prunes any branches
whose estimated lower bound of execution risk exceeds the
upper bound. Such pruning allows RAO* to be very efficient
at a cost of suboptimality, because it allocates risk greedily

among the different possible observations. We also introduce
a variant, safe RAO*, that tries to ensure that the execution
risk at all time steps remains below the overall risk bound. To
modify RAO* for our purpose, we make sure that it computes
the safe belief, execution risk, and cumulative cost at each
node in Figure 4 as defined in Section III-A.

ACDC [24] is an anytime optimal solver for constrained
POMDPs (CPOMDPs) producing deterministic policies. It
consists of two phases, where in the first phase, it solves a
dual problem to quickly find a satisficing solution, and in the
second phase, it systematically explores deviating policies
from the current incumbent to improve the quality of the
solution until the optimal one is found. To modify ACDC
for our purpose, we can emulate the expansion in Figure 4
by introducing dummy branches of observations that lead to
a terminal failure state, used to encode the probability of
failure resulting from an inapplicable intervention action or
observations of team actions that lead to failure.

CC-POMCP [25] is an MCTS algorithm for CPOMDPs
that extends the idea of POMCP [26] to constrained cases,
producing stochastic policies and converging to the optimal
policy over time. To handle the constraints, it uses the dual
formulation to convert the problem into an unconstrained
one while optimizing the value of the dual parameter at the
same time as the policy. Since MCTS only requires a black
box simulator that generates a sample of (st+1, ot+1, ct, ert)
given (st, at), where ct and ert are the cost and risk spent
at a single step, we can simply implement such a simulator
function that emits samples according to Section III-A.

For our assistant to execute online, there are two options.
In the case that the system is guaranteed to terminate within
h steps, where h is the horizon, we can simply follow the
policy found by our risk-bounded algorithm, such as RAO*.
If not, we can consider a receding horizon control strategy,
where only the first action of the policy is taken at each
step, and we replan for a new policy upon each observation.
This may be a reasonable option as we often want to limit
the horizon h for efficiency, or if we cannot predict when
the system will terminate. In the case of receding horizon
control, the system keeps track of the probability that it is still
safe Psa. Every time an intervention action at is taken and an
observation ot+1 is received, the belief is updated according
to Eq (4) and (8), with Psa multiplied by the probability of
safety psa(b̃t, a) and psa(b̃

′
t+1, o). The system replans every

time using the updated risk bound (∆− (1−Psa))/Psa that
discounts the risk already spent.

V. EXPERIMENT RESULTS

To show the effectiveness of our assistant, we evaluate the
success rate of multi-agent task execution with and without
the assistant and demonstrate the assistant in simulation. For
the experiments, we set horizon h = 3 and use a receding
horizon strategy for execution. We set the intervention cost
for explanations to 1, question-asking and intent announce-
ment to 2, and the cost for team inaction to 1. To estimate
Oi(s, oi) for each agent i, we run EPike’s MCTS algorithm



Fig. 5. Success rate and total cost with and without assistant

for 100 iterations. For observations of team actions, we
sample from our computed estimation of probability.

Success Rate: We first evaluate the success rate of multi-
agent task execution on a set of randomly generated sequen-
tial tasks. We consider a 2-agent team taking turns to execute
actions, with 2 choices per action, similar to picking a mug or
a glass. Task constraints of the form “if this choice of action
is taken, then that other choice of action must be taken” are
randomly sampled and added to the task. We sample from 1
to 5 actions per agent. Additionally, we sample from 0 to 3
task constraints that the agents are missing collectively, i.e.
some agent does not have knowledge of the constraint. For
each missing constraint, a probabilistic distribution of two
out of four cases in Figure 2 is assigned.

We evaluate the success rate and the total cost under a
timeout of [0.5, 2, 5, 10] seconds, using a risk bound from
[0.1, 0.2, 0.3, 0.5]. If no solution is found within the timeout,
no intervention is taken. Figure 5 top row shows the averaged
result for the generated testcases over all the risk bounds for
the different risk-bounded algorithms. The results show that
the assistant significantly increases the success rate given
enough time, with (safe) RAO* being the most efficient at
finding a solution. This is likely because RAO* requires
fewer calls to estimate the probability of observations due
to its pruning of the policy space, where the majority of the
computation time is spent. The bottom row shows the success
rate under different risk bounds. We see that the success
rate decreases as we increase the risk bound, especially for
CC-POMCP, since it employs stochastic policies that can
maximize its utilization of risk.

Demonstration: To illustrate the types of Theory of Mind
scenarios that can be modeled in this framework and how
the assistant can help the team, we provide demonstrations
in 2 hand-crafted domains. For the demonstration, we use the
RAO* algorithm with a risk bound of 0.05. First, we consider
the Breakfast domain as described in Figure 1. We integrated
the EPike algorithm [6] and our assistant algorithm with
the Virtualhome simulator [27], and demonstrate 3 scenarios
detailed in the attached video. Second, we consider a Search
and Rescue domain, where two agents must put out fire, if
there is one, before rescuing a victim in the room. They need
the medkit to rescue the victim and the extinguisher to put out
the fire. Both agents are capable of performing all the actions.
We assume the assistant can only communicate privately with

Fig. 6. Scenarios: (A) There is some probability that both agents think the
other agent will rescue the victim. (B) Both agents know about the fire. (C)
There is some probability that neither agent knows about the fire.

each agent. We run the algorithm on 3 scenarios and illustrate
the results in Figure 6. Note that in scenario (B), we describe
a situation where actions are partially observed by agents in
the team and the assistant can explain the occurrence of an
action to the agents. This is a novel feature compared to
EPike that assumes agents have full observability of actions,
since as an external observer, the assistant can be reasonably
assumed to have full observability of action execution.

Compared to an assistant formulated as a third agent in the
team using the EPike formulation, our risk-bounded assistant
has the benefit that: (1) It assumes a higher priority than
regular agents in the team. (2) It considers the probabilities
of potential epistemic states, instead of treating them with
equal weights. (3) Its belief state is updated via Bayesian
posterior upon observation of agents’ actions whereas an
agent’s belief is only revised through DEL action update.
However, our work has the limitations that it does not handle
contingent world state observations and requires the initial
pool of possible epistemic states to be provided. Future
work could incorporate agents’ beliefs of the current world
state and consider contingent plans [21], and investigate the
generation of epistemic state hypotheses on the fly [3].

VI. CONCLUSION

In this work, we combine insights from epistemic plan-
ning and POMDP techniques to develop a risk-bounded
AI assistant that improves teamwork through interventions.
We validated through experiments and simulation that the
assistant is effective in improving team performance.
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