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Abstract— In this work, we study how to build socially
intelligent robots to assist people in their homes. In particular,
we focus on assistance with online goal inference, where robots
must simultaneously infer humans’ goals and how to help
them achieve those goals. Prior assistance methods either lack
the adaptivity to adjust helping strategies (i.e., when and
how to help) in response to uncertainty about goals or the
scalability to conduct fast inference in a large goal space.
Our NOPA (Neurally-guided Online Probabilistic Assistance)
method addresses both of these challenges. NOPA consists of
(1) an online goal inference module combining neural goal
proposals with inverse planning and particle filtering for robust
inference under uncertainty, and (2) a helping planner that
discovers valuable subgoals to help with and is aware of
the uncertainty in goal inference. We compare NOPA against
multiple baselines in a new embodied AI assistance challenge:
Online Watch-And-Help, in which a helper agent needs to
simultaneously watch a main agent’s action, infer its goal, and
help perform a common household task faster in realistic virtual
home environments. Experiments show that our helper agent
robustly updates its goal inference and adapts its helping plans
to the changing level of uncertainty.1

I. INTRODUCTION

There has been growing interest in engineering socially
intelligent robots that can safely and productively work with
humans in the real world. Prior work on robot assistance has
achieved some success in scenarios where robots are given
the true human goals a priori or only need to help humans
in simple environments with a small state space. However, it
remains very challenging to build robot assistants that can
help humans perform all the activities of daily life in more
natural settings, such as in our homes, where the space of
human goals is vast and a person’s goal at any point in time
will not generally be known with certainty.

Our goal here is to build robot assistants that are able to
help people perform a wide range of tasks in complex home
environments. Our robot assistants must have the ability to
infer the true goals of humans based on past observations in
an online fashion, plan how to help humans without disrupting
them, and adapt to their behaviors by simultaneously updating
goal inference and helping strategies as the task progresses
(as illustrated in Fig. 1). Such ability has proven difficult for
robots to date due to two main technical obstacles. On the
one hand, online goal inference in realistic environments is
extremely difficult due to large state, action, and goal spaces;
on the other hand, inaccurate or ambiguous goal inferences
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1Code is available at https://github.com/xavierpuigf/
online_watch_and_help. Project website: https://www.tshu.
io/online_watch_and_help.
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Fig. 1: Illustration of successful online assistance. The robot
initially has no knowledge about the human’s goal and thus
would opt to observe. As it observes more human actions, it
becomes more and more confident in its goal inference, so it
would dynamically adjust its helping subgoal. For instance, in
this figure, the robot first sees the human walking towards a
cabinet and consequently infers that the goal involves objects
inside the cabinet. After the human grabs 2 forks, the robot
infers that the goal is to put 2 sets of dining pieces (plates and
forks) on the dining table or the coffee table but is uncertain
about the goal location. Thus, it hands over 2 plates to the
human instead of randomly guessing a location.

often lead to ineffective or even counterproductive attempts
to help in systems that are not aware of their own uncertainty.

To address these challenges, we propose a novel online as-
sistance method, NOPA (Neurally-guided Online Probabilistic
Assistance). As illustrated in Fig. 2a, NOPA consists of two
main components: (1) a neurally-guided online goal inference
module and (2) an uncertainty-aware helping planner. The
neurally-guided online goal inference module first produces
bottom-up goal proposals from a neural network and then
maintains a set of predictions of goals and future trajectories
consistent with the observed actions via particle filtering and
inverse planning. This ensures that inferences are both fast
and robust. Given the latest predictions and their certainty, the
helping planner first identifies a subgoal that is most valuable
to help with and then plans the corresponding helping actions
using a symbolic planner. The resulting helping plan can adapt
to all levels of uncertainty in the predictions. For instance,
when there are multiple possible target locations for a goal
object, the robot assistant will deliver the object to the human
agent instead of risking misplacing the object.

For evaluation, we present a new embodied AI assis-
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Fig. 2: (a) Overview of our approach, which consists of an online goal inference module and a helping planner. We represent
states and goals using scene graphs. st is the state at time t; atM is the main agent’s action at time t; ĝk is the k-th goal
proposal; and Γ̂k is the prediction of the main agent’s future trajectory corresponding to ĝk. (b) Goal proposal network.
∆st is a matrix encoding the difference between the predicate counts in the states st and s0, where each row is a one-hot
vector, indicating the change in the count of a specific predicate. p = 136 is the number of all predicate types, c = 9 is the
maximum number of counts, and d = 100 and h = 128 are the dimensions of the intermediate layers.

tance challenge, Online Watch-And-Help (O-WAH), which
builds off a recent multi-agent virtual home environment,
VirtualHome-Social. Unlike most existing challenges (e.g.,
[1], [2]), in O-WAH, a helper agent needs to infer the goal
of a main agent in an online fashion and simultaneously help
achieve the inferred goal as efficiently as possible. We evaluate
agents built with NOPA and several baselines in a range of
household tasks, helping the main agent controlled by either
a human player or a planner-based agent. The experimental
results show that NOPA significantly outperforms all baselines.
We are also able to observe intelligent helping strategies
emerging from NOPA adapting to new observations.

In sum, our main contribution includes (1) a new online
assistance method for building socially intelligent home
assistants in complex settings and (2) an embodied AI
assistance challenge, Online Watch-And-Help, as a testbed for
training and testing embodied agents to perform online goal
inference and helping in realistic virtual home environments.

II. RELATED WORK

Online goal inference. Online goal inference approaches
generally fall into two categories – (1) feedforward prediction
that directly maps observed past trajectories to possible goals,
typically enabled by goal prediction networks [3]–[11], or
(2) generative approaches such as inverse planning [12]–[19]
which conduct inference by comparing generated plans of
given goal hypotheses with observed actions. Feedforward
methods are fast and can perform well in simple tasks (such
as destination prediction for pedestrians [5]) when trained
with a large amount of data. However, in unfamiliar scenar-
ios, inverse planning methods often outperform feedfoward
prediction due to their ability to imagine rational behaviors
under various conditions. One of the limitations of inverse
planning methods is that they can be slow if the goal space
is large and rely on manually designed heuristics to speed
up the inference [17], [18]. Our work integrates these two
types of approaches to achieve both speed and robustness.

Embodied AI assistance with unknown goals. There has
been a rich history of research on embodied AI assistance.

Many of the existing works assume a known common goal
shared among human and AI/robot partners [1], [20]–[27].
However, in the real world, robots often need to infer humans’
goals on the fly. There has been work on helping with
inferred goals [2], [28]–[32] which shows that an accurate
goal inference can improve the objective and perceived
performance of embodied AI assistants. However, when the
goal inference is uncertain, helping with inferred goals often
leads to counterproductive behaviors such as undoing finished
goals [2]. For this, some prior work devised planners under
uncertain goal inference in simple environments [33]. A
recent study proposed a goal-agnostic assistance framework
via empowerment [34], which aims at changing the states
to maximize an agent’s ability to reach as many goals as
possible regardless of its true intent. Despite its success
in certain domains, assisting humans in real-world settings
without the knowledge of their goals would often result in
counterproductive behaviors. Our work investigates how to
design an uncertainty-aware planner that intelligently adjusts
the helping behavior ranging from goal-agnostic strategies to
goal-specific plans in a complex environment.

Embodied AI assistance benchmarks. There have been
benchmarks designed to evaluate AI agents’ ability to
collaborate with human teammates [1], [25]. However, most
of them focus on simple game environments and assume
a common goal given to both the AI and human agents a
priori. Based on a realistic virtual home environment, [2]
proposed a challenge, Watch-And-Help, in which a helper
agent must infer a main agent’s goal from a pre-recorded
demonstration, and then help the main agent to achieve the
same goal. We extend this challenge to an online assistance
setting, where the demonstration is no longer available. As a
result, helper agents have to pay attention to the main agent’s
actions and constantly update the inference and its uncertainty
while working towards inferred goals, which is closer to what
robots are expected to do in real homes. Such benchmark
complements conventional robot assistance studies conducted
in lab environments [20], [21], providing a reproducible and



Algorithm 1 NOPA
1: Input: Γ0

M = {(s0, a0M)}, st, K, Tmax, Tprop, q, wr , wc, wm, Lmax
2: t← 1, l← 0
3: Q← ∅
4: repeat
5: Q, l← GoalInf(t, Q,Γt−1

M , st, q,K, l, Tprop)
6: ΓtH ← HelpPlanner(Q, s0, st, wr, wc, wm, Lmax)
7: Execute the first action from the helping plan atH
8: Observe atM, s

t+1 from the environment
9: t← t+ 1

10: until t = Tmax or the true goal has not been reached

scalable way to compare different methods.

III. METHOD

A. Problem Setup

We define the online assistance problem as a mixed-
observability Markov decision process (MOMDP) [35], where
a helper agent needs to infer a main agent’ goal and help
the main agent achieve its goal faster. This can be formalized
by 〈S,G,AH,O, TS , TG , Z,RH, γ〉. The overall state has two
components: the world state, s ∈ S , which is fully observable
to both agents, and the main agent’s goal, g ∈ G, which is
partially observable to the helper agent. AH is the action space
of the helper agent. The helper agent’s observation consists of
the world state and the main agent’s action, i.e., O = S×AM.
TS(s, g, aH, s

′) = p(s′|s, g, aH) is the transition function for
the world state, and TG(s, g, aH, s

′, g′) = p(g′|s, g, aH, s
′) is

the transition function for the goal. Z(s′, g′, aH, o) = p(o =
(s, aM)|s′, g′, aH) is the conditional probability function for
the observation result. At step t + 1, the helper infers the
main’s goal given main’s past trajectory upon t, i.e., Γt =
{(sτ , aτM)}tτ=1. The expected reward function for the helper
agent is defined as RH(s, a|Γt) = Ep(g|Γt)[1(s = g)]−cH(a),
where cH(a) is the cost for action a, and 1(·) checks if the
goal is satisfied in the current world state s. γ is the discount
factor. Note that the assumption that the world states are
fully observable for both agents is common in prior work on
assistance with unknown goals [29], [31], [32].

B. Method Overview

To solve the online assistance problem formalized above,
we propose NOPA (Neurally-guided Online Probabilistic
assistance). Fig. 2a provides an overview of NOPA, showing
the two main components: i) Neurally-guided online goal
inference, and ii) an uncertainty-aware helping planner. As
sketched in Algorithm 1, NOPA updates a set of particles
conditioned on observed states and the main agent’s actions.
Each particle corresponds to a possible final goal. Common
assistance frameworks [2], [29], [31], [32] typically only
consider the final goal for helping. However, when there
is uncertainty in the goal inference, an intelligent assistant
should seek intermediate subgoals that can be helpful with
high certainty. For that, we also predict the main agent’s future
trajectory for each particle. We represent both intermediate
states and final goals as a set of edges in a scene graph [36],
[37], 〈O,E〉, as shown in Fig. 2a. Each node, o ∈ O, repre-
sents an entity (agent/object); each edge, e ∈ E, corresponds

Algorithm 2 GoalInf

1: Input: t, Q, Γt−1
M = {(sτ , aτM)}t−1

τ=0, st, q, K, l, Tprop
2: Output: Updated proposals Q′ and steps since last proposal l′
3: Q′ ← ∅
4: if Q 6= ∅ and l < Tprop then
5: for k = 1, · · · , |Q| do
6: if at−1

M is part of the plan Γ̂k then
7: Q′ ← Q′ ∪ {(ĝk, Γ̂k)}
8: end if
9: end for

10: end if
11: if Q′ = ∅ then
12: for k = 1, · · · ,K do
13: ĝk ∼ q(g|s0, st) // Sample a goal proposal
14: Γ̂k ← MCTS(st, ĝk, Tprop) // Sample a plan
15: Q′ ← Q′ ∪ {(ĝk, Γ̂k)}
16: end for
17: l′ ← 0
18: else
19: l′ ← l + 1
20: end if
21: return Q′, l′

to a predicate (e.g., IN(apple, kitchencabinet)),
indicating the spatial relationship between two entities. Such
representations have been widely adopted in robotics and
embodied AI [38]–[41]. Given the particles, the helping
planner assesses the value of the edges in the intermediate
states and the final goals and selects the most valuable edge
as the helping subgoal. We introduce the details below.

C. Neurally-guided Online Goal Inference

Unlike prior work on online goal inference, the objective
of the online goal inference in this work is to help the
downstream task, i.e., assistance. This poses additional
challenges: (1) the helper agent has to estimate the uncertainty
in the inference instead of only predicting the most probable
goal; (2) it has to ensure that the inference is resilient in
a dynamic environment; and (3) the inference has to be
efficient so that the helper can have a prompt reaction to offer
assistance. For this, we propose a neurally-guided online goal
inference algorithm as summarized in Algorithm 2, which
combines inverse planning and a neural network.

We use a goal proposal network (GPN), as depicted in
Fig. 2b, to learn a proposal distribution q(g|s0, st), from
which we can sample K goal proposals {ĝk}Kk=1 given the
initial state s0 and the current state st. Each goal proposal is
a set of goal predicates. Here, we only consider the first state
and the current state instead of a sequence of past states for the
input to GPN so that the GPN trained on episodes with only
the main agent performing the tasks can be robustly applied
to the helping condition where the sequence of state changes
could become very different from the training sequences.

We use inverse planning to evaluate the goals proposed by
the GPN and reject the ones that are inconsistent with the
observed main agent’s actions. To model an agent’s behavior
given each goal ĝk with bounded rationality, we use the built-
in planner to predict the future trajectory of the main agent in
the next Tprop steps Γ̂k = {(ŝt+τk , ât+τk)}Tprop

τ=1. Specifically,
the level of rationality can be adjusted by the number of



Algorithm 3 HelpPlanner
1: Input: Q, s0, st, wr , wc, wm, Lmax
2: Output: helping plan ΓtH
3: for e ∈ E do
4: LM(e)←∞
5: p(e)← 0
6: V (e)← −∞
7: ΓH(e)← ∅
8: if e appears in the initial state then
9: LM(e)← 0

10: p(e)← 1
11: else
12: for k = 1, · · · , |Q| do
13: if e appears in the future traj. Γ̂k then
14: Let τk(e) be the first step when e appears in Γ̂k
15: LM(e)← min(LM(e), τk(e))
16: p(e)← p(e) + 1/|Q|
17: else if e appears in the predicted goal ĝk then
18: LM(e)← min(LM(e), Lmax)
19: p(e)← p(e) + 1/|Q|
20: end if
21: end for
22: end if
23: if p(e) > 0 then
24: ΓH(e)← MCTS(st, {e},∞) // Helper’s plan for subgoal e
25: LH(e)← |ΓH(e)|
26: Compute V (st, e) as Eq (1)
27: end if
28: end for
29: e∗ ← arg maxV (st, e)
30: return ΓH(e∗)

simulations and the length of rollouts. We then create K
particles Q = {ĝk, Γ̂k}. Whenever the main agent takes
a new action, atM, we check if it is part of the predicted
plan for each particle. If for a particle k, the action is not
included in the predicted plan, then it suggests that the rational
behavior under the corresponding goal is not consistent with
the observed action. Thus the goal is likely to be wrong and
the particle needs to be rejected. When there is no particle left
or we have reached the prediction horizon Tprop, we resample
another K goals from the GPN based on the latest state
and create new particles. Since some particles may share the
same goal but have different predicted plans, our approach
can consider different ways to reach a goal.

D. Uncertainty-aware Helping Planner

Finding the optimal helping plan at each step is expensive.
To balance the speed and the optimality, our helping planner
(Algorithm 3) focuses on finding valuable subgoals instead of
updating the whole plan at each step. It considers all edges
that appear in the final goal and the intermediate states in the
predicted main agent’s plans as candidate helping subgoals.
Additionally, the helper agent may find that the objects it
grabs are no longer needed when it updates goal inference or
after the main agent achieves the corresponding subgoals. To
allow the helper agent to return those objects to their initial
locations, the helping subgoal space also includes edges in
the initial state. For each edge e, we estimate how long it
would take the main agent to reach that subgoal, LM(e). If
this edge appears in one of the predicted trajectories in the
particles, we can conveniently estimate LM(e) based on when
it appears in the trajectories. If it only appears in the final

goals, we then use a fixed length, Lmax, to anticipate how
many steps it would take the main agent to reach that subgoal.
We can also use MCTS to search for a plan for the helper
agent, ΓH(e), to reach the same subgoal. Let LH(e) be the
length of the helper’s plan, we then define the benefit of
helping with subgoal e as the speed up the helper agent can
offer by reaching the subgoal e, i.e., max(LM(e)−LH(e), 0).
To account for the uncertainty in inference, we estimate how
likely e is going to be necessary, p(e), by counting how many
particles include e in either the intermediate states or the
final goal. Finally, we define a value function for selecting
the best subgoal for the helper agent:

V (st, e) = wrp(e)|LM(e)− LH(e)|+ − wcLH(e)
−wm(D(s0, ŝ(e))−D(s0, st)),

(1)

where wr, wc, and wm are constant weights; D measures
the difference between two states; and ŝ(e) is the state after
reaching the subgoal e from the current state st. The three
terms in Eq. (1) evaluate i) the expected benefit of helping
reach the subgoal, ii) the cost of the helper agent, and iii)
the additional state change (compared with the initial state)
introduced by the subgoal. These three terms make sure that
the helper agent selects a subgoal that i) is likely to speed up
the task with high certainty, ii) is not too costly for the helper
agent, and iii) could restore the initial states of objects that
are not needed for the task respectively. Given the subgoal
e∗, we execute the first action of the helping plan ΓH(e∗).

IV. ONLINE WATCH-AND-HELP

To evaluate different assistance methods, we propose On-
line Watch-And-Help (O-WAH), an embodied AI assistance
challenge, in which a helper agent has to infer a main agent’s
goal and help reach the goal as fast as possible. This extends
an existing challenge, Watch-And-Help (WAH), to an online
assistance problem. O-WAH is built in a realistic multi-agent
virtual platform, VirtualHome-Social [2], simulating daily
household tasks (as shown in Fig. 3). The goal for each task
is defined by a set of predicates and their counts, representing
the target locations of different objects in the environment.
We sample each goal in the challenge from five general
types of household tasks: set table, put dishwasher, stock
fridge, prepare meal, and get snacks. Note that we define
task types only to ensure that the goals are emulating real-life
household tasks, but that this information is not provided to
the helper agents. As summarized in Table I, different kinds
of uncertainty may arise from these tasks: i) uncertainty in
the number of objects, ii) uncertainty in which objects are
needed, and iii) uncertainty in the target locations. Compared
to prior work, the goal space in O-WAH is 1 or 2 orders of
magnitude larger. We adopt the same action space in [2].

To create a training episode, we first sample a goal and an
initial environment using one of the five training apartments
and then use a built-in planner to control the main agent
to perform the task alone. The built-in planner is the same
hierarchical planner as in [2]. We create a large training
set with 6,000 episodes and a small training set with 300



Helper agent: 
infer Main’s goal
and help reach 
the goal faster

Main agent: 
set up a dinner table

Fig. 3: An example setup of O-WAH
in one of the simulated apartments.

TABLE I: The goal definition and the number of unique goals for each task type.

Task Name Goal definition #Goals

Set table
Put N plate, N fork, N OBJ on LOC, where N ∼ U(1,3),

12OBJ ∼ choice([waterglass, wineglass]),
LOC ∼ choice([kitchentable, coffeetable])

Put dishwasher Put N objects from OBJ_POOL in dishwasher, where N ∼ U(3,7), 315
OBJ_POOL = [fork, plates, waterglass, wineglass]

Stock fridge Put N objects from OBJ_POOL in fridge, where N ∼ U(3,7), 315
OBJ_POOL = [salmon, apple, cupcake, pudding]

Prepare meal Put N salmon, N apple, N OBJ on LOC, where N ∼ U(1,3), 18
OBJ ∼ choice([cupcake, pudding]),
LOC ∼ choice([kitchentable, coffeetable, stove])

Get snacks Put 1 remote, 1 condiment, 1 chips on coffeetable 1

a. b. c. d.

Main controlled by a planner

Main controlled by humans

Fig. 4: (a) Speedup of different methods (striped bars indicate using the small training set). Errors are standard errors. (b)
F1-scores of the predicted goal over the course of a task. The x axis is normalized in proportion to the number of steps
needed for the main agent to perform each task alone. The curves show the means and the shaded regions show the standard
errors. c) F1-scores over time for different approaches in a single test episode, a dot indicates the number of steps a given
baseline took to complete the task. The dashed lines in (b) and (c) indicate using the small training set. (d) Results of the
human experiment. Here we show the speedup of different methods when the main agent is controlled by the built-in planner
or by human players (note that the results under the two conditions are based on the same 10 testing episodes).

episodes. The testing set has 100 episodes in the two testing
apartments unseen during training.

We use F1-score over the goal predicates to measure the
goal inference accuracy. To evaluate the helping performance,
we use speedup, where we compare the episode length when
the helper agent works with the main agent (LH) against the
episode length when the main agent works alone (LM), i.e.,
LM/LH − 1. For each episode, set a time limit of 250 steps
and report the average performance across 3 runs.

V. EXPERIMENTS

A. Baselines
We compare NOPA against several baselines.

HPGPN: We adopt the best performing approach in the original
Watch-And-Help challenge [2] for this baseline, which is a
hierarchical planner (HP) based on the most probable goal
according to the GPN. In particular, at each step, HPGPN
uses the goal ĝ = arg maxg q(g|s0, st).
AFGPN: We extend HPGPN by using NOPA’s online goal
inference. We generate a plan for each predicated goal using
HP and execute the most frequent first action among all plans.
Empowerment: By adopting the idea of empowerment [34],
this baseline uniformly samples K goals at each step, predicts
plans and intermediate states for the goals, and selects the
most frequent edge in the intermediate state as the helping
subgoal (i.e., the most common subgoal for any goal).
HPRG: A hierarchical planner based on a randomly sampled
goal at the beginning of the episode.

We consider the following ablated methods to evaluate the
effect of different components of NOPA.
OursRG: We replace the proposal distribution q in Algo-
rithm 2 with a uniform distribution.
Ours-InvPlan: Ours without inverse planning.
Ours-Return: Ours without returning irrelevant objects to their
initial locations (wm = 0 in Eq.(1)).

By default, the GPN is trained on the large training set. To
evaluate the sample efficiency of NOPA, we also report the
performance of Ours and HPGPN, when the GPN is trained
on a small training set, indicated by the subscript GPN-S.
To measure the upper bound on the helping performance,
we also implement an oracle helper HPGT, which knows the
ground-truth goal and is controlled by an HP.

We set Tmax = 250, Tprop = 15, wr = 1, wc = 1, wd = 5,
and Lmax = 100 for NOPA. For all approaches that propose
multiple goals, we use K = 20 proposals. We train the GPN
using Adam [42] with a learning rate of .0009 and a batch
size of 256.

B. Results

1) Main Controlled by a Planner: We evaluate all methods
with a main agent controlled by the built-in planner and
report the helping speedup (average and standard error across
episodes) in Fig. 4a. For methods that have different goal
inference modules, we also report the F1-score of their goal
inference results in Fig. 4b. The speedup of the oracle agent,
operating with true knowledge about the goal, HPGT is 1.29.
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Fig. 5: Goal inference and plans by NOPA for the same
task shown in Fig. 4c, which is setting up a kitchen table
for 3 persons. We show the posterior probabilities of the
top predicates and their counts based on the particles at
each step, key actions of the main agent (indicated by red
dots), and key helping actions (indicated by blue dots). At
step 2, after watching the main agent walking towards the
dishwasher, NOPA rejects proposals involving nearby objects
(e.g., apples, salmons) that are not inside of the dishwasher.
After the main agent grabs a fork at step 8, NOPA infers with
high confidence that the goal is setting up a table for at least
one person. So at the following step, the helper agent takes
its very first action – walking to grab a plate. Upon seeing
Main walking to the kitchen table at step 10, the goal location
becomes certain. After observing more actions, the inference
converges to setting up the kitchen table for 3 persons.

Helper grabs an apple.
Helper hands the apple over to 
Main.

Main puts the apple in the 
fridge, and Helper goes to grab 
other objects.

Helper gets a fork, as Main 
goes to get a fork too. 

Main puts the fork on the table. 
Helper infers that no more forks 
are needed.

To avoid messing up the 
environment, Helper puts back 
the fork it grabbed.

a. Helper hands over an object to Main 

b.  Helper returning an extra object to its original location 

Fig. 6: Examples of helping plans that are beyond directly
achieving final goals. Main is in red, and Helper is in blue.

NOPA (Ours) outperforms all baselines, offering the highest
speedup. It also achieves the best goal inference accuracy at
the early stage of the tasks, which serves as the foundation
of its successful assistance. This benefit can be more clearly
seen from Fig. 4c (the improvement margin appears to be
smaller since the temporal normalization for each episode is
different). The low speedup by Empowerment suggests that
online goal inference is necessary for effective assistance,

despite its success in certain domains shown in prior work
[34]. Given that the predicted goal may be uncertain, using
multiple goal proposals leads to a better helping performance,
as seen by comparing OursGPN with HPGPN. The effect is
more pronounced when the GPN is trained with fewer data
and is consequently less accurate (GPN-S). We also find
that the neurally-guided goal proposals can greatly improve
the goal inference over uniform goal proposals (OursRG).
Moreover, the results demonstrate that inverse planning is
important for filtering spurious goal proposals from GPN,
significantly improving the speedup over Ours-InvPlan since it
allows the goal inference to reach a relatively high accuracy
much earlier than Ours-InvPlan and other baselines do (see
Fig. 4c). Finally, by comparing NOPA with Ours-Return, we
can see a marginal improvement in speedup by avoiding
unnecessarily distorting the environment; Ours-Return also
causes 11.2% more unnecessary state changes.

Fig. 5 shows a typical successful example by NOPA, where
the task is the same as the one in Fig. 4c. It demonstrates
that NOPA can i) achieve accurate goal inference early on
by filtering out goal proposals that are inconsistent with the
main agent’s actions, ii) correctly update the goal inference
and its uncertainty estimation based on more observation, and
iii) plan for effective helping actions based on the filtered
goal proposals and the uncertainty in the inference. Note that
the helper remains idle but takes a useful helping action as
soon as the goal inference becomes confident and is able to
avoid grabbing extra objects thanks to its gradual update of
the number of objects needed.

We also observe diverse helping behaviors enabled by
NOPA that are not just about directly achieving the final
goals as shown in Fig. 6. First, the helper agent sometimes
selects a subgoal of handing over objects to the main agent.
For example, as illustrated in Fig. 6a, the helper agent hands
over the apple to the main agent who is right next to the
fridge so that the task execution can be faster. Second, the
helper agent can return extra objects to their initial locations
once it realizes that they are not needed for reaching the goal
(Fig. 6b). The supplementary video2 shows more examples.

2) Main Controlled by Humans: To evaluate how effective
helper agents are at assisting real humans, we conducted a
human experiment where the main agent is controlled by
human players. We used 10 testing episodes to run 40 trials.
In each trial, a human participant was asked to either perform
the task alone (to estimate the number of steps needed for
completing each task alone) or work with a helper agent
controlled by one of the three approaches, NOPA, HPGPN,
and HPRG. Participants did not know which helper agent they
were working with. We recruited 10 participants (mean age
= 32.3; 4 female) who had no prior exposure to our system.
As shown in Fig. 4(d), the ranking of the methods remains
consistent when the main agent is controlled by human players.
There is no significant difference in NOPA’s performance
under the two conditions (t(9) = 0.87, ρ = 0.40).

2The supplementary video is available at https://youtu.be/Oawo9pynPL0.



VI. CONCLUSION

In this work, we propose a novel method for building
socially intelligent home assistants, Neurally-guided Online
Probabilistic Assistance (NOPA), which integrates (1) a hybrid
online goal inference algorithm combining a goal proposal
network and inverse planning and (2) an uncertainty-aware
helping planner that identifies valuable helping subgoals from
both the final goals and intermediate states. For a systematic
and scalable evaluation, we introduce a new embodied AI
assistance challenge, Online Watch-And-Help, based on a
realistic virtual home platform. We evaluate NOPA with
several baselines in our challenge with a main agent controlled
either by a built-in planner or by humans. Our experiments
show that NOPA significantly outperforms baselines and
achieves great sample efficiency for training. In the future,
we plan to extend NOPA to a partial observability setting
and apply it to robots in real homes.
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